Making Pi

1 Introduction

1.1 Definition of Pi

Consider any circle with radius r and circumference C. In the following sections, we show that the ratio

$$\frac{C}{2r}$$

is just a number which does not change with different circles. This is a very useful fact, since once we know what the number is, we can use it to find C whenever we know the value r. We define π to be this special ratio:

$$\pi = \frac{C}{2r}.$$

Then we automatically get the formula $C = 2\pi r$, which enables us to evaluate C whenever we know the value of r.

1.2 Evaluation of Pi

It can be shown that the number π is irrational (in fact transcendental); this means that the decimal expansion of π goes on forever and does not repeat itself, and so we can never evaluate π exactly! What we do here is we find a sequence of better and better approximations for π. To do this, we use the same method used by Archimedes (about 200 B.C.).
2 Archimedes’ Method for finding π

We first find approximations for the circumference C of a circle. We can approximate the value of C with the perimeter of a polygon inscribed inside the circle. In the following diagram, we have a hexagon inscribed inside a circle of radius r. The hexagon is made up of six equilateral triangles, each of which has side length r. Now

$$C \approx r \times 6 = 6r,$$
and so $\pi \approx \frac{6r}{2r} = 3$.

To improve this approximation for π, we continually double the number of sides of the polygon inscribed inside the circle.

Then we get an increasing sequence

$$C_0 = \ell_0 \times 6, \quad C_1 = \ell_1 \times 6 \times 2, \quad C_2 = \ell_2 \times 6 \times 2^2, \ldots, \quad C_n = \ell_n \times 6 \times 2^n, \ldots$$

of approximations for C. In fact, we actually define the circumference C by $C = \lim_{n \to \infty} C_n$. Archimedes did not have a computer, calculator or even tables of the trigonometric functions (sine, cosine and tangent) at his disposal to calculate ℓ_n; so how did he calculate ℓ_n without using trigonometry?
We start with $\ell_0 = r$ (in the six-sided polygon). In order to find ℓ_1 we will use a 30° right-angled triangle. This can be found as follows.

In the following diagram, the angle $C\overline{P_0D}$ is a right-angle (by the Circle Lemma (a)). Also, by the Circle Lemma (b), the angle $\angle CD\overline{P_0} = \frac{1}{2} 60^\circ = 30^\circ$. Thus, we can construct a 30° right-angled triangle, with side lengths r, $\frac{r}{2}$ and $\frac{\sqrt{3}}{2}r$, as shown in the following diagram:

We use the 30° right-angled triangle to find ℓ_1:

Note that we can calculate ℓ_1 by using Pythagoras’ Theorem:

$$\ell_1^2 = \left(\frac{r}{2}\right)^2 + \left(r - \frac{\sqrt{3}}{2}r\right)^2 = \frac{r^2}{4} + r^2 - \sqrt{3}r^2 + \frac{3}{4}r^2 = (2 - \sqrt{3})r^2.$$

Therefore, without using trigonometry, we have calculated that $\ell_1 = r\sqrt{2 - \sqrt{3}}$.

3
As a bonus, we get even more information: we can now construct a 15° right-angled triangle. In the following diagram, the angle CP_1D is a right-angle (by the Circle Lemma (a)). Also, by the Circle Lemma (b), the angle $CDP_1 = \frac{1}{2}30^\circ = 15^\circ$. Thus, we can construct a 15° right-angled triangle, with side lengths r, $\frac{\ell_1}{2}$ and $\frac{1}{2}\sqrt{4r^2 - \ell_1^2}$, as shown in the following diagram:

We can use this 15° right-angled triangle to calculate ℓ_2.

Now

$$
\ell_2^2 = \left(\frac{\ell_1}{2}\right)^2 + \left(r - \frac{1}{2}\sqrt{4r^2 - \ell_1^2}\right)^2
$$

$$
= \frac{\ell_1^2}{4} + r^2 - r\sqrt{4r^2 - \ell_1^2} + \frac{1}{4}(4r^2 - \ell_1^2)
$$

$$
= 2r^2 - r^2 \sqrt{4 - \left(\frac{\ell_1}{r}\right)^2}
$$

$$
= r^2 \left(2 - \sqrt{4 - \left(\frac{\ell_1}{r}\right)^2}\right)
$$
and so \(\ell_2 = r\sqrt{2 - 4 - \left(\frac{l_1}{r}\right)^2} \).

If we repeat this process by constructing a 7.5° right-angled triangle, we get

\[
\ell_3^2 = \left(\frac{\ell_2}{2}\right)^2 + \left(r - \frac{1}{2}\sqrt{4r^2 - \ell_2^2}\right)^2 = 2r^2 - r\sqrt{4r^2 - \ell_2^2} = r^2 \left(2 - \sqrt{4 - \left(\frac{\ell_2}{r}\right)^2}\right)
\]

and so \(\ell_3 = r\sqrt{2 - 4 - \left(\frac{l_2}{r}\right)^2} \).

In general, for any natural number \(i \), we have

\[
\ell_{i+1} = r\sqrt{2 - 4 - \left(\frac{l_i}{r}\right)^2}.
\]

We now have a method for calculating \(\ell_i \):

\[
\begin{align*}
\ell_0 &= r \\
\ell_1 &= r\sqrt{2 - 4 - \left(\frac{l_0}{r}\right)^2} = r\sqrt{2 - \sqrt{4 - 1^2}} = r\sqrt{2 - \sqrt{3}} \\
\ell_2 &= r\sqrt{2 - 4 - \left(\frac{l_1}{r}\right)^2} = r\sqrt{2 - \sqrt{2 + \sqrt{3}}} \\
\ell_3 &= r\sqrt{2 - 4 - \left(\frac{l_2}{r}\right)^2} = r\sqrt{2 - \sqrt{2 + 2 + \sqrt{3}}} \\
\ell_4 &= r\sqrt{2 - 4 - \left(\frac{l_3}{r}\right)^2} = r\sqrt{2 - \sqrt{2 + 2 + 2 + \sqrt{3}}}.
\end{align*}
\]

Now, since \(C_n = \ell_n \times 6 \times 2^n \) (see page 2), we have the following approximations for \(C \):

\[
\begin{align*}
C_0 &= \ell_0 \times 6 = 6r \\
C_1 &= \ell_1 \times 6 \times 2 = 12r\sqrt{2 - \sqrt{3}} \\
C_2 &= \ell_2 \times 6 \times 2^2 = 24r\sqrt{2 - \sqrt{2 + \sqrt{3}}} \\
C_3 &= \ell_3 \times 6 \times 2^3 = 48r\sqrt{2 - \sqrt{2 + 2 + \sqrt{3}}} \\
C_4 &= \ell_4 \times 6 \times 2^4 = 96r\sqrt{2 - \sqrt{2 + 2 + 2 + \sqrt{3}}}.
\end{align*}
\]

Recall that, on page 2, we defined \(C \) by \(C = \lim_{n \to \infty} C_n \). This means that

\[
\pi = \frac{C}{2r} = \frac{1}{2r} \lim_{n \to \infty} C_n = \lim_{n \to \infty} \frac{C_n}{2r}.
\]
Therefore, if we let $\pi_n = \frac{C_n}{2r}$, then the sequence $\pi_0, \pi_1, \pi_2, \ldots$ approaches π as $n \to \infty$. Our approximations for π are now

$$
\begin{align*}
\pi_0 &= \frac{C_0}{2r} = \frac{6r}{2r} = 3 \\
\pi_1 &= \frac{C_1}{2r} = \frac{12r\sqrt{2 - \sqrt{3}}}{2r} = 6\sqrt{2 - \sqrt{3}} = 3.105829 \\
\pi_2 &= \frac{C_2}{2r} = 12\sqrt{2 - \sqrt{2 + \sqrt{3}}} = 3.132629 \\
\pi_3 &= \frac{C_3}{2r} = 24\sqrt{2 - \sqrt{2 + \sqrt{2 + \sqrt{3}}}} = 3.139350 \\
\pi_4 &= \frac{C_4}{2r} = 48\sqrt{2 - \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{3}}}}} = 3.141032.
\end{align*}
$$

Since each π_i ($i = 0, 1, 2, 3, \ldots$) is just a real number (independent of r and C), we have that π is also just a real number, as stated in Section 1.

2.1 Archimedes’ Calculation

When Archimedes found approximations for π, he first needed to find approximations for the square roots of numbers (because he didn’t have a calculator!). At the time, various methods for finding square roots were known (see the Maths 1 Extension topic “How does a calculator calculate $\sin x$?”). He actually found the approximation $3 + \frac{10}{71}$ for π_4. Furthermore, he found approximations for the circumference C of a circle by circumscribing the circle with polygons, i.e., by putting the polygons on the outside of the circle. These other approximations are always greater than C, whereas the approximations that we have found are always smaller than C. By comparing the two different approximations, we can get an upper bound and a lower bound for π. When $n = 4$, Archimedes found that

$$
3 + \frac{10}{71} < \pi < 3 + \frac{1}{7}.
$$

It is interesting to note that $3 + \frac{1}{7} = \frac{22}{7}$ is a very common approximation for π that is still used today!

Compare the following values:

$$
\begin{align*}
3 + \frac{10}{71} &= 3.140845 \\
\pi_4 &= 3.141032 \\
\pi &= 3.14159265358979 \\
\frac{22}{7} &= 3.142857.
\end{align*}
$$

2.2 Rounding Errors

Note that C_4 is the perimeter of a polygon with 96 sides. If we calculated C_5, it would be the perimeter of a polygon with $96 \times 2 = 192$ sides, and so C_5 is a better approximation that C_4.

6
In general C_{n+1} is a better approximation that C_n, and so π_{n+1} is a better approximation that π_n. In theory, this means that we can compute π to any degree of accuracy we like, by choosing n large enough. Unfortunately, this does not work in practice.

Consider the formula $C_n = \ell_n \times 6 \times 2^n$. When we calculate ℓ_n with a calculator or computer, we can only do so for a fixed number of decimal places; this causes rounding error. For example, suppose that we calculate ℓ_{20} with an error of 0.00000000001. Since $C_{20} = \ell_{20} \times 6 \times 2^{20}$, we will have an error of 0.000000000001 \times 6 \times 220 = 0.000006291456 for C_{20}.

As n gets even larger the term 2^n causes small errors in ℓ_n to become large errors in C_n. This means that Archimedes’ Method is not good for approximating π to a large number of decimal places with a computer or calculator.

For example, using about 14 decimal places we have

$$\begin{align*}
\pi_0 &= 3 \\
\pi_5 &\approx 3.14145247228546 \\
\pi_{10} &\approx 3.14145247228546 \\
\pi_{15} &\approx 3.1415926534921 \\
\pi_{20} &\approx 3.14159264532122 \\
\pi_{25} &\approx 3.14167426502176 \\
\pi_{30} &\approx 3.18198051533946 \\
\pi_{31} &\approx 3 \\
\pi_{32} &\approx 4.24264068711929.
\end{align*}$$

The true value of π is $\pi = 3.14159265358979$, and so our approximations π_i start to get worse when $i \approx 20$.

3 Modern methods for finding π

For centuries, people have been fascinated by π and a lot of effort has been put into computing π to as many decimal places as possible (its decimal expansion never repeats).

To 39 decimal places of accuracy, it can be shown that

$$\pi = 3.141592653589793238462643383279502884197$$

But how can we find π so accurately? One of the most common methods for computing π is called Machin’s Formula.

3.1 Machin’s Formula

One method of calculating π is to use the facts that

\begin{enumerate}
 \item $\frac{\pi}{4} = \tan^{-1}(1)$; and
 \item inverse tangent can be expanded in a power series:
 \[\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots \quad |x| \leq 1.\]
\end{enumerate}
It follows that \(\pi = 4 \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots\right) \). Unfortunately, the above series converges quite slowly. For example
\[
4 \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \frac{1}{13}\right) = 3.28373848373848.
\]
With this series, we need a lot of terms to evaluate \(\pi \) accurately.
To get a series that converges faster, we note that the series
\[x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots\]
converges faster when \(x \) is closer to zero. Machin realised that
\[
\tan^{-1}(1) = 4 \tan^{-1} \left(\frac{1}{5}\right) - \tan^{-1} \left(\frac{1}{239}\right)
\]
(see Section 4 for details) and that the series for \(\tan^{-1} \left(\frac{1}{5}\right) \) and \(\tan^{-1} \left(\frac{1}{239}\right) \) converge quite fast. Thus Machin’s Formula:
\[
\frac{\pi}{4} = 4 \tan^{-1} \left(\frac{1}{5}\right) - \tan^{-1} \left(\frac{1}{239}\right)
\]
can be used to approximate \(\pi \) fairly accurately.

Example 1. We have
\[
\tan^{-1} \left(\frac{1}{5}\right) \approx \frac{1}{5} - \frac{(\frac{1}{5})^3}{3} + \frac{(\frac{1}{5})^5}{5} = 0.197397333333333
\]
and
\[
\tan^{-1} \left(\frac{1}{239}\right) \approx \frac{1}{239} - \frac{(\frac{1}{239})^3}{3} + \frac{(\frac{1}{239})^5}{5} = 0.00418407600207473.
\]
Therefore an approximate value for \(\pi \) is given by
\[
\pi = 16 \tan^{-1} \left(\frac{1}{5}\right) - 4 \tan^{-1} \left(\frac{1}{239}\right)
\approx 16(0.197397333333333) - 4(0.00418407600207473)
= 3.14162102932503.
\]

3.2 Other formulas

There are hundreds of formulas for calculating \(\pi \). Some interesting ones are

\[
(i) \quad \frac{\pi}{2} = \prod_{n=1}^{\infty} \left[\frac{(2n)^2}{(2n-1)(2n+1)}\right] = \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}
\]

\[
(ii) \quad \frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots
\]

\[
(iii) \quad \frac{\pi}{2} = \frac{1}{2} \sum_{n=0}^{\infty} \frac{(n!)^2 2^{n+1}}{(2n+1)!} = 1 + \frac{1}{3} + \frac{1 \cdot 2}{3 \cdot 5} + \frac{1 \cdot 2 \cdot 3}{3 \cdot 5 \cdot 7} + \cdots
\]
4 Exercises

Machin-like formulas come from the identity
\[
\tan(\theta_1 + \theta_2) = \frac{\tan \theta_1 + \tan \theta_2}{1 - \tan \theta_1 \tan \theta_2}.
\]

Let \(x = \tan \theta_1 \) and \(y = \tan \theta_2 \). Then
\[
\tan(\theta_1 + \theta_2) = \frac{x + y}{1 - xy}
\]
and so
\[
\theta_1 + \theta_2 = \tan^{-1} \left(\frac{x + y}{1 - xy} \right).
\]

Since \(x = \tan \theta_1 \) and \(y = \tan \theta_2 \), we have \(\theta_1 = \tan^{-1}(x) \) and \(\theta_2 = \tan^{-1}(y) \).

Thus
\[
\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x + y}{1 - xy} \right). \quad (1)
\]

We can use the above identity to find numbers \(x \) and \(y \) such that \(\tan^{-1} x + \tan^{-1} y = \tan^{-1}(1) \).

Our goal is to make \(x \) and \(y \) as close to zero as possible, so that the power series for \(\tan^{-1} x \) converges quickly.

(a) **(Euler’s Formula.)** Use identity (1) and the fact that \(\frac{\pi}{4} = \tan^{-1}(1) \) to show that
\[
\tan^{-1} \left(\frac{1}{2} \right) + \tan^{-1} \left(\frac{1}{3} \right) = \frac{\pi}{4}.
\]

(b) **(Hutton’s Formula.)** We now find \(x \) such that \(\tan^{-1} \left(\frac{1}{2} \right) = \tan^{-1} x + \tan^{-1} \left(\frac{1}{3} \right) \).

By identity (1), the number \(x \) must satisfy
\[
\tan^{-1} \left(\frac{1}{2} \right) = \tan^{-1} \left(\frac{x + \frac{1}{3}}{1 - \frac{x}{3}} \right).
\]

Solve the equation
\[
\frac{1}{2} = \frac{x + \frac{1}{3}}{1 - \frac{x}{3}}
\]
for \(x \), and then by using (a), show that
\[
\frac{\pi}{4} = 2 \tan^{-1} \left(\frac{1}{3} \right) + \tan^{-1} \left(\frac{1}{7} \right).
\]

(c) Show that
\[
\alpha = \frac{x + y}{1 - xy} \quad \Rightarrow \quad x = \frac{\alpha - y}{1 + \alpha y}. \quad (2)
\]
(d) By using (1) and (2) find x such that $\tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1} x + \tan^{-1} \left(\frac{1}{7}\right)$; hence by using (b) show that
\[\frac{\pi}{4} = 3\tan^{-1} \left(\frac{1}{7}\right) + 2\tan^{-1} \left(\frac{4}{22}\right) . \]

Identity (1) implies two other identities:
\[\tan^{-1} x - \tan^{-1} y = \tan^{-1} \left(\frac{x - y}{1 + xy}\right) \]
\[2\tan^{-1} x = \tan^{-1} \left(\frac{2x}{1 - x^2}\right) \]

These identities can be used to derive more Machin-like formulas:

(e) **(Hermann’s Formula.)** Use (3) and (4) to show that
\[\frac{\pi}{4} = 2\tan^{-1} \left(\frac{1}{2}\right) - \tan^{-1} \left(\frac{1}{7}\right) . \]

(f) **(Machin’s Formula.)** Use (4) to show that $4\tan^{-1}(\frac{4}{5}) = \tan^{-1} \left(\frac{120}{119}\right)$. Now use (3) to show that
\[\tan^{-1} \left(\frac{120}{119}\right) - \tan^{-1} \left(\frac{1}{239}\right) = \tan^{-1}(1) . \]

Hence deduce that
\[\frac{\pi}{4} = 4\tan^{-1} \left(\frac{1}{5}\right) - \tan^{-1} \left(\frac{1}{239}\right) . \]

5 **Reference**

A large amount of information about π can be viewed on the internet at:

- http://mathworld.wolfram.com/Pi.html
 (Don’t type www before mathworld!)